38 research outputs found

    Robotic exoskeletons: A perspective for the rehabilitation of arm coordination in stroke patients

    Get PDF
    Upper-limb impairment after stroke is caused by weakness, loss of individual joint control, spasticity, and abnormal synergies. Upper-limb movement frequently involves abnormal, stereotyped, and fixed synergies, likely related to the increased use of sub-cortical networks following the stroke. The flexible coordination of the shoulder and elbow joints is also disrupted. New methods for motor learning, based on the stimulation of activity- dependent neural plasticity have been developed. These include robots that can adaptively assist active movements and generate many movement repetitions. However, most of these robots only control the movement of the hand in space. The aim of the present text is to analyze the potential of robotic exoskeletons to specifically rehabilitate joint motion and particularly inter-joint coordination. First, a review of studies on upper-limb coordination in stroke patients is presented and the potential for recovery of coordination is examined. Second, issues relating to the mechanical design of exoskeletons and the transmission of constraints between the robotic and human limbs are discussed. The third section considers the development of different methods to control exoskeletons: existing rehabilitation devices and approaches to the control and rehabilitation of joint coordinations are then reviewed, along with preliminary clinical results available. Finally, perspectives and future strategies for the design of control mechanisms for rehabilitation exoskeletons are discussed

    Magnetic transport in a straight parabolic channel

    Full text link
    We study a charged two-dimensional particle confined to a straight parabolic-potential channel and exposed to a homogeneous magnetic field under influence of a potential perturbation WW. If WW is bounded and periodic along the channel, a perturbative argument yields the absolute continuity of the bottom of the spectrum. We show it can have any finite number of open gaps provided the confining potential is sufficiently strong. However, if WW depends on the periodic variable only, we prove by Thomas argument that the whole spectrum is absolutely continuous, irrespectively of the size of the perturbation. On the other hand, if WW is small and satisfies a weak localization condition in the the longitudinal direction, we prove by Mourre method that a part of the absolutely continuous spectrum persists

    GRAB: A Dataset of Whole-Body Human Grasping of Objects

    Full text link
    Training computers to understand, model, and synthesize human grasping requires a rich dataset containing complex 3D object shapes, detailed contact information, hand pose and shape, and the 3D body motion over time. While "grasping" is commonly thought of as a single hand stably lifting an object, we capture the motion of the entire body and adopt the generalized notion of "whole-body grasps". Thus, we collect a new dataset, called GRAB (GRasping Actions with Bodies), of whole-body grasps, containing full 3D shape and pose sequences of 10 subjects interacting with 51 everyday objects of varying shape and size. Given MoCap markers, we fit the full 3D body shape and pose, including the articulated face and hands, as well as the 3D object pose. This gives detailed 3D meshes over time, from which we compute contact between the body and object. This is a unique dataset, that goes well beyond existing ones for modeling and understanding how humans grasp and manipulate objects, how their full body is involved, and how interaction varies with the task. We illustrate the practical value of GRAB with an example application; we train GrabNet, a conditional generative network, to predict 3D hand grasps for unseen 3D object shapes. The dataset and code are available for research purposes at https://grab.is.tue.mpg.de.Comment: ECCV 202

    Hopf Bifurcation in a Delayed Solow-Verhulst Model

    No full text
    In this paper, we propose a mathematical study of the relationship between population dynamics and economic growth. To do this, the total population is divided into three disjoint classes: employed, unemployed and economically inactive population. On the one hand, the evolution of the number of individuals in each compartment is described by Verhulst model and on the other hand the economic growth is governed by the Solow equation. The resulting model is a system of differential equations with time delay. The dynamics, of this system, are studied in terms of local stability and of local Hopf bifurcation. Some numerical simulations are given to illustrate our theoretical results. Additionally we conclude with some remarks

    An Overview of 3D Object Grasp Synthesis Algorithms

    Get PDF
    This overview presents computational algorithms for generating 3D object grasps with autonomous multi-fingered robotic hands. Robotic grasping has been an active research subject for decades, and a great deal of effort has been spent on grasp synthesis algorithms. Existing papers focus on reviewing the mechanics of grasping and the finger-object contact interactions [7] or robot hand design and their control [1]. Robot grasp synthesis algorithms have been reviewed in [63], but since then an important progress has been made toward applying learning techniques to the grasping problem. This overview focuses on analytical as well as empirical grasp synthesis approaches

    A Manipulation Planner for Pick and Place Operations under Continuous Grasps and Placements

    No full text
    This paper addresses the manipulation planning problem which deals with motion planning for robots manipulating movable objects among static obstacles. Motion planning in this context appears as a constrained instance of the coordinated motion planning problem. Indeed, movable objects can only move when they are grasped by a robot. We propose a manipulation planner capable of handling continuous domains for modeling both the possible grasps and the stable placements of a single movable object, rather than discrete sets generally assumed by the existing planners. The algorithm relies on a topological property that characterizes the existence of solutions in the subspace of configurations where the robot grasps the object placed at a stable position. This property leads to reduce the problem by structuring the search-space. It allows us to design a manipulation planner that directly captures in a probabilistic roadmap the connectivity of sub-dimensional manifolds of the composite configuration space. First experiments demonstrate the feasibility and the efficiency of the approach.
    corecore